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ABSTRACT

This research extends previous thesis work by Becker and
Mills, and is concurrent with that of Stengel on the super-
plastic behavior of warm rolled high-Mg, Al-Mg alloys. In
this work, the effects of various alloy additions were
investigated. The following Al-Mg alloy compositions were
studied: 8% Mg:; 8% Mg-0.4% Cu; 8% Mg-0.4% Cu-0.5% Mn; 10%
Mg:; 10% Mg-0.4% Cu; 10% Mg-0.2 Mn. These materials were
solution treated and hot worked at 440°C and then warm
rolled at 300°C to 94% reduction. Tensile testing was then
conducted for the as-rolled condition. The alloys were
tested at temperatures ranging from room temperature to

300°C and at strain rates from 5.6 x 10-5 sec-l to 1.4 x

lO"l sec—l. The copper addition has, on the same weight
percentage basis, the same effect on superplasticity as does
the addition of manganese to the alloy. The addition of
small amounts (i.e., approximately 0.2 weight percent) of

manganese appears to offer little advantage over the binary

compositions in terms of superplasticity.
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particles or as a continuous network at the grain bound-
aries. Dissolved copper produces the highest increase in
strength while still retaining substantial ductility.
Copper is a grain refiner in aluminum alloys. At the
temperatures and composltions considered here, the
composition of the intermetallic phase present would be
CuMg4Al6. A phase diagram for the Al-Mg-Cu system is
present 1in Figure 2.2. The solid solubility of copper in
aluminum is decreased by magnesium addition especially in
the 7-15% magnesium range [Ref. 16]. In the Al-Mg-Cu alloy
system the hardness, ultimate tensile strength, yield
strength, and percentage elongation are strongly dependent
on heat treatment. Superplasticity has been previously
investigated in the Al-Cu system by Holt [Ref. 17], and in
the Al-Mg-Cu system by Becker [Ref. 10].

A phase diagram for the Al-Mg-Mn system can be found in
Figure 2.3. At the alloying levels considered in this
research, the apparent intermetallic phase present would ba
MnAl6_ This result was confirmed by selected area
diffraction work conducted by Garg on these alloys [Ref. 9].
Finely dispersed particles of MnAl6 facilitate formation of
suogralins and hinder grain growth in aluminum alloys.
Manganese 1n solution has little or no effect on grain size;
recrystallization, and precipitation overlap, and interacnt

strongly with the magnesium addition. At temperatures below

25
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in Figure 2.1. All phase diagrams are after Mondolfo

[Ref. 13j. From this diagram, it can be seen that the
solubility of magnesium in aluminum varies from 0.8 weight
percent at 100°C to a maximum of approximately 15 weight
percent at the eutectic temperature of 451°C. The
difference in solubility as a function of temperature
provides a driving force for second phase(s) particle
formation when the temperature is reduced to a value below
the solvus for the amount of magnesium present in the alloy.
The beta phase (AlgMgg) is the intermetallic that exists
above five weight percent magnesium. A major problem with
this alloying addition is that the beta phase has a tendency
to form at grain boundaries. The strength of the alloy
increases and the ductility decreases as the magnesium
content is increased from five to fourteen weight percent.
Alloys with magnesium contents in excess of fourteen weight
percent have been found to be too brittle to determine
tensile properties [Ref. 16].

Copper is added to the aluminum- alloys to increase the
strength of the alloy at low temperatures by heat treatment,
and at high temperatures through the formation of compounds
with other metals. As the copper content of an alloy
increases, theres is a continuocus increase of hardness, but
strength and ductility depend on whether the copper is in

solid solution, as spheroidized and evenly distributed

23




Values for the activation energy may be obtained from
the log strain rate versus inverse temperature plot for data
at constant stress. Activation energy may be constant for a
range of stress, but may change to a different value for a
different range of stress. Values for the deformation
activation energy are frequently the same as those for
lattice diffusion, suggesting lattice diffusion control of
deformation, and this is noted in particular for dislocation
climb controlled plastic flow [Ref. 15]. Lower values for
the activation energy may be observed when grain boundary
sliding controls the deformation process. Diffusion in the
grain boundaries, the rate controlling process, may occur
more readily than diffusion in the grain interior, and hence
may be characterized by the lower activation energy.
Measurement of the activation energy may provide information

concerning the mode of deformation at work in a material.

D. ALLOYING ADDITIONS

The magnesium addition to aluminum alloys results in
lower density, and increased strength. Most of the strength
in these alloys is due to magnesium in solid solution,
although precipitation does occur. Strength can be
increased by cold or warm working. Aluminum-magnesium
alloys with minor other alloying elements added, are capaible
of obtaining good strength, corrosion resistancs, and

toughness. The phase diagram for this system is illustratad

22
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2levated temperatures. For a thermally activat=2d process,
l the flow stress is a function of strain, strain rate, and

temperature. Stress is often assumed to depend upon strain

rate at constant strain and temperature according to the

relation:

‘m
g = ke (egqn. 2.2)
I where ¢ is the stress, e is the strain rate, kK is a

temperature dependent constant, and m is the strain rata
sensitivity coefficient. In general, m increases with

) increasing temperature. In most metals, superplastic
behavior usually occurs at high m values of 0.3 to 0.5, and
is the greatest at the maximum value for m. The value for m

{ can be found by plotting log stress vs. log strain rate for
data obtained at constant strain and temperature. A large
value for m confers resistance to localized necking by

I causing increased resistance to further deformation when
necking begins to occur.

The activation energy (Q), is a measure of the energy
! required for temperature-dependent processes. For a

thermally activated deformation process:
| e = f£(g)exp(-Q/RT) (egn. 2.3)

where R 1is the gas constant, and T the absolute temperatursa.

21
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matrix to minimize the formation of cavities [Ref. 13]. The
fine grains should consist of small equiaxed grains with
smooth, rounded grain boundaries to promote grain boundary
sliding. Grain growth suppresses superplasticity as larger
grains impose greater diffusion distances and reduce the
strain resulting from boundary sliding.

In order to prevent grain growth in superplastic
forming, some form of grain boundary pinning is necessary.
A fine and deformable precipitate will enhance the
material's resistance to grain growth. Given that a
dispersion of particles is present during elevated
temperature flow, where recrystallization and grain growth
occur, these particles may inhibit grain growth following

the Zener-McLean relationship [Ref. 14]:

d = 4r/3f (egn. 2.1)

where d is the grain size, r is the particle radius, and £
is the volume fraction. This equation is based on the idea
that particles sitting on grain boundaries prevent flexing
of the boundary as it attempts to sweep through a field of
such particles. Clearly, for a given volume fraction f, a
smaller particle size should lead to a finer grain size.
Deformation at elevated temperatures is a thermally

activated process, and superplasticity is observed only at
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Mi1lls [Ref. 1ll1)], extended the previous work by Becker on
the Al-10% Mg-0.5% Mn alloy with a comprehensive study of

superplasticity in this system. He also extended testing

into the temperature range 325°C to 425°C to study grain

boundary sliding effects and recrystallization in this
alloy. Mills found that the high ductilities observed at
temperatures above the solvus are the result of grain
poundary sliding. Stengel {[Ref. 12], is currently studying
the effects of annealing on superplasticity in this alloy

system.

cC. SUPERPLASTIC BEHAVIOR

Superplasticity 1s defined as the ability of a material
to deform to an exceptionally high elongation. Super-
plasticity 1s often taken to mean elongation in excess of
200% [Ref. 13]. Values greater than 1000% are common. The
ma jor reguirements for superplasticity are generally agreed

to be: a fine equiaxed grain structure with high angle

grain poundaries, deformable second phase (if present),
temperatures in the range of 0.5 - 0.7 Tm, low strain rates,
P.‘ and a high strain rate sensitivity coefficient (m).

A fine grain size of less than ten microns is normally

requirad to achleve superplasticity. Also, a fine disper-

" sion of intermetallic phases(s) 1s usually required to
EA retard grain growth under warm temperature conditions. The
El phase(s) should be deformable and similar in strength to the
L@
19
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method of storing energy release at annealing temperatures
of 0.6 Tm.

Johnson [Ref. 7], standardized the thermomechanical
processing of the 8 - 10% aluminum magnesium alloys. In
these alloys, he reported good ductility and material
strength twice that of 5XXX alloys. His procedure was to
solution treat the material at 440°C for nine hours, anneal
for one hour at 440°C, guench, and then warm roll. Johnson
used warm rolling temperatures in the range from 200°C to

340°C. He concluded that the beta phase (Al Mgg) contri-

8
buted by dispersion strengthening to the high strength and
good ductility found in these alloys.

Shirah [Ref. 8], improved the microstructural homo-
geneity by increasing the solution treatment time to 24
hours. This extended treatment minimized precipitate
banding while not effecting grain growth.

Becker [Ref. 10], combined previous work, and developed
the procedures for isothermal tensile testing at elevated
temperatures. His testing centered around temperatures of
250°C, and 300°C. His work concentrated on the Al-8%
Mg-0.4% Cu and Al-10% Mg-0.5% Mn alloys. Becker observed
superplastic elongations up to 400%, and concluded that the
higher magnesium content in the 10% Mg-0.5% Mn alloy
stabilized grain size and extended the range of superplastic

behavior to higher temperatures.

18
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rolling portion of the thermomechanical processing sequence.
Bingay [Ref. 2] performed both isothermal and non-isothermal
forging prior to rolling in 15-19% magnesium containing
alloys. Due to processing difficulties, subsequent work was
shifted to emphasis on relatively lower magnesium alloys.
Glover [Ref. 3], studied alloys containing 7-9% magnesium,
and was the first to observe the characteristics of super-
plastic behavior in this alloy system.

Grandon [Ref. 4], introduced a twenty-four hour solution
treatment followed by an oil quench, and warm rolling at
300°C in his study of the Al-7 to 10% Mg alloys. He found
that these alloys maintained good ductility, and a doubling
of strength when compared with the 5XXX series alloy.
Another finding was that recrystallization did not occur
during warm rolling below the solvus. Speed [Ref. 5],
extended Grandon's work to alloys bearing higher magnesium
contents.

Chestarman [Ref. 6], studied the nature of precipitation
and recrystallization in alloys with magnesium contents in
the 8 - 14% range through optical microscopy. He found that
recrystallization occurred only at temperaturss above the
solvus, and was not induced even after extensive cold
working followed by annealing, provided that the annealing
temperature was below the solvus. Further, he found that

recrystallization was replaced by precipitation as the

17
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II. BACKGROUND

A. ALUMINUM-MAGNESIUM ALLOYS

The advantages offered by aluminum alloys include their
low density, ductility, and toughness. Higher strength
aluminum alloys get their strength mainly from precipitation
and solid solution strengthening. In these processes, the
formation of a second phase retards dislocation motion.

The aluminum magnesium alloy system has been studied
extensively in this laboratory and was selected in part for
this work because of its good strength to weight ratio,
superior ductility, lower density, and better corrosion
resistance than other higher strength aluminum alloys. This
alloy system also offers good high cycle fatigue behavior.
Its strength can be improved through cold or warm working,

and it can be easily processed.

B. PREVIOUS WORK

Ness [Ref. 1], studied an 18% aluminum-magnesium alloy
concentrating on development of material processing
technigues to achieve microstructural refinement and better
mechanical properties. He achieved a compression strength
of 655 MPa (99 KSI) with this alloy.

A serious problem encountered with high magnesium-

aluminum alloys is the elimination of cracking during the

le
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LQ microscopy as well as the results from the mechanical

4

testing of the as-rolled magnesium aluminum alloys to assist
in the evaluation of the test results. Review of this work

and new questions are posed for subsequent investigation.
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rolling. These alloys were tested in the as-rolled
condition, and also subsequent to annealing treatments for
various times at 300°C, and finally in the recrystallized
condition after heating for one half hour at 440°C as well.

Elevated temperature testing was conducted at 250°C, and

300°c.

Mills [Ref. 11], (based upon the results obtained by
i' Becker) conducted an in-depth study of the Al-10% Mg-0.5% Mn
system. Stengel [Ref. 12], is currently investigating
annealing effects in the same alloy.
g The processing technigue developed by Johnson [Ref. 7],
and the elevated temperature tensile testing procedure
developed by Becker [Ref. 10], and, as modified by Mills
[Ref. 11], were used to study the effect of alloying
additions in the following: Al-8% Mg, Al-10% Mg, Al-8%

Mg-0.4% Cu-0.5% Mn, Al-10% Mg-0.4% Cu, and Al-10%-0.2% Mn

and from Becka2r and Mills' work on the Al1-10% Mg-0.5% Mn

y
p
p
<
4
h
}
3 |
E! alloys. Results from Becker's work on the 8% Mg-0.4% Cu, i
d \
} |
}-
+ alloys were also used.

An electromechanical Instron machine with a Marshall

y—o
i three zone clamshell furnace to maintain temperature control
}, were used for tensile testing. Optical microscopy was used
b
?. to examine the microstructure of samples in the as-rolled
f
b ~ondition. This thesis presents the data obtained from the
microstructural examination conducted using optical
e i
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- |
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‘: I. INTRODUCTION

The purpose of this thesis was to investigate the =ffect
of alloying additions on the elevated temperature deforma-

tion characteristics of thermomechanically processed high-

LS SO T SUn o
. e
. L

magnesium aluminum magnesium alloys. Previous work by

ﬁl Ness [Ref. 1], Bingay [Ref. 2], Glover [Ref. 3], Grandon

r [Ref. 4], Speed [Ref. 5], Chesterman [Ref. 6], Johnson

E (Ref. 7], and Shirah [Ref. 8], have shown that thermo-

S mechanically processed high-magnesium Al-Mg alloys exhibit
good ductility with high strength at ambient temperatures.
McNelley and Garg [Ref. 9] have established through trans-
mission electron microscopy that the microstructures of
these alloys consists of fine, cellular dislocation struc-
tures or subgrain structures. They also reported that

annealing the samples after warm rolling resulted in

B TR PR
/I

recovery along with possible small amounts of recrystalli-

zation to fine grains of submicron size. These results

X

t prompted further research into the elevated temperature
- 4

ﬁ, behavior of these aluminum magnesium alloys with emphasis on
3

.
2 their possible superplastic behavior.
b
¢
P‘ Becker [Ref. 10], then investigated superplasticity in
{ the Al-3% Mg-0.4% Cu, and the Al-10% Mg-0.5% Ma alloys.
-
: These alloys were thermomechanically processed by warm
}
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Figure 2.2. Phase Diagram for Al-Mg-Cu Alloy System
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) Figure 2.3. Phase Diagram for Al-Mg-Mn Alloy System
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650°K, precipitation precedes recrystallization _Ref. lo._.
The s50lid solubility of manganese 1in aluminum 13 decreased
by the addition of magnesium. At higher levels of magna2s51um
addition, the solubility becomes much smaller. The maximum
solubility of magnesium is also reduced by the addition of
manganese. Less than 0.08% magnesium can dissolve in MnAlé,
and little or no manganese can dissolve in the bata phase.

Manganese and magnesium have an additive effect on the

mechanical properties of this alloy system.

27
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ITI. EXPERIMENTAL PROCEDURE

A. MATERIAL PROCESSING

The compositions of the aluminum alloys investigated in
this research are listed in Table I [Ref. 7]. ALCOA
Techrical Center produced the direct chill cast ingots using
99.99% pure aluminum and alloying was done with commercially
pure magnesium, 5% beryllium-aluminum master alloy, mangan-
@se containing mastar alloy, Ti-B master alloy, and other
commercially pure alloying additions, (i.e., Cu). Upon
receipt, the ingots measured 127 mm (5 in) in diamet=sr, and

1016 mm (40 in) in length.

TABLE I

Alloy Composition (Weight Percent)

Serial Number Si Fe Cu Mn Mg Ti Be

501301A 0.01 0.03 0.41 0.00 10.0 0.01 0.0002
501303A 0.01 0.03 0.40 0.00 8.14 0.01 0.0002
501304A 0.01 0.03 0.40 0.52 8.22 0.01 0.0002
572821A-2 0.01 0.02 0.00 0.00 8.13 0.01 0.0003
572824a-1 0.01 0.02 0.00 0.00 10.0 0.01 0.0003
572325A-1 0.01 0.02 0.00 0.22 10.0 0.01 0.0004

28

RS A e e e Al e maltalA aaad

BN PR . |



ey

L S i S A

W VY. WL W WL WL WO ST W

e LaNS aon Jaum b St T i A2t Dol S st &4 ana ] TV P Ty ww

™

The ingots were sectioned to produce billets of dimen-
sions 96 mm (3.75 in) x 32 mm (1.25 in) x 32 mm (1.25 in).
These dimensions were selected to facilitate subsequent
processing of the billets. The procedure for the
thermomechanical processing of the billets is similar to
that developed by Johnson [Ref. 7], and refined by Becker
[Ref. 10]. In this procedure, billets were sclution treated
at 440°C for 24 hours, and upset forged at 440°C on heated
platens to a final height of approximately 28 mm (1.1 in),
resulting in a reduction of 73% or a true strain of
approximately 1.3. This value is essentially the maximum
value that could be processed on the available rolling mill.
Subsequent to upset forging the billet was annealed at 440°¢

for one hour, and then oil guenched.

B. WARM ROLLING

The technique for warm rolling the billets into sheets
was essentially the same as the one described by Mills
[Ref. 11], who modified that used by Becker [Ref. 10], and
Johnson [Ref. 7). The billet was initially heated to 300°¢C
prior to first rolling pass. This required a time of
approximately ten minutes after the surface temperature of
tha sample reached 300°c. 1Isothermal heating of the sample
is essential to prevent cracking of the forged billets
during the rolling process. To achieve this, each billet

was placed on a large steel plate that served as a heat

29
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source in the furnace between rolling passes. Sample
heating times varied from eight minutes between passes
initially, to four minutes petw2en pasees on the last saven
to eight passes. The sample remained in the furnace just
long enough between passes tO insure a uniform consistent
temperature in the sample. The billets were rolled with the
rollers lowered in increments of 1.02 mm (0.04 in)
initially, and 0.762 mm (0.03 in) on the last seven to eight
passes. The warm rolling process generally required from
twenty-eight to thirty passes per billet to achieve the
required final thickness. The temperature of the sample and
the plat= was monitored using thermocouples. 1In later
rolling phases, the deformed sheet was pulled through the
rolling mill with the aid of manual pressure in order to
minimize warping. In the final "as-rolled" condition, each
billet was rolled into a sheet about 1.8 mm (3.07 in) thick,
102 mm (4 in) wide, and 762 mm (40 in) long. The final
sample reduction was approximately 94%, corresponding to a
true strain of about 2.3.

The rolled sheets wera cut into blanks of dimensions ©3
mm (2.47 in) long, and 13 mm (0.5 in) wide using the
procedure described in Becker [Ref. 10]J. Each billet
yielded between thirty and forty blanks. Tensilas test
specimens were produced by endmilling blanks in lots of five

to a final gage width of approximately 3 mm (0.12 in), and a

30
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gage length of 15 mm (0.6 in). Test specimens wars
fabricataed by using a pattern jig as a milling guide. A

sketch of the test specimen is shown in Figure 3.1.

C. TENSILE SPECIMEN TESTING

Tensile testing of samples was conducted using an
electromechanical Instron machine. Test specimens were
placed in wedge-action grips held in place by pins passing
through wedges. The grip and specimen assembly were mounted
into pull rods connected to the Instron machine. The grips
(model #713C) were fabricated of Inconel 718 specifically

for use at elevated temperatures. The grips, grip assem-

blies and pull rods were produced by ATS, Inc., of Butler,

Pennsylvania.
Elevated temperature testing was conducted using a
Marshall Model #2232 three-zone clamshell furnace. Furnace
temperature was controlled by three separate controllers,
one for each zone. Caramic thermocouple sheaths were
utilized to pass the thermocouples for the furnace con-
into the furnace.

trollers The controller thermocouple for

the upper and lower zones of the furnace were locatad six
inches above and below the thermocouple entrance port

respectively, and approximata2ly one inch in from the furnace
heating elements. The central controller was located one
inch directly inside the furnace thermocouple 2ntry port.
insulation of one

Glass inch thickness was used for
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Test Specimen Geometry

Figure 3.1.
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insulation. Flue effect in the furnace was reduced by using
two hollow circular tubes of insulation material and ceramic
tiles placed around the pull rods at the top and bottom of
the furnace to prevent heat loss. Thin strips of asbestos
impregnated paper and glass fiber insulation were placed on
the closing surfaces of the furnace. This insulation was
found to be important in obtaining and maintaining a uniform
temperature distribution in the test zone. Thermal
insulation pads were placed over the top and under the
bottom of the furnace.

Five thermocouples were installed inside the furnace to
monitor temperature. A thermocouple was placed on the top
pull rod, four inches above the bottom of the rod and
towards the back side of the furnace. Another thermocouple
was placed in contact with the specimen and just inside the
upper wedge. Two additional thermocouples were placed at
corresponding positions on the lower pull rod. Finally a
thermocouple was also placed near, but not touching, the
middle of the tensile test specimen at the start of the
test. Set temperatures were adjusted to remain within 1% of
the desired temperature throughout the duration of the tast.

Instron crosshead speeds for the tension testing ranged
from 0.005 mm/min to 127.0 mm/min (0.0002 in/min to 5.0
in/min) at temperatures of 20°C, 250°C, and 300°C. The

magnification ratio used for the automatic chart recorder

33
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was 100 for 0.05 mm/min crosshead speech, 40 for the 0.127
mm/min speed, and ten for the remaining test speeds. The
clamshell furnace was heatad to constant temperature for a
twenty-four hour period prior to commencing a series of
tests.

Testing was conducted immediately upon attaining a
stable, isothermal test temperature after installation 2f a
test specimen. At very low strain rates, the bottom pull
rod temperature would slowly start to drop as the bottom
pull rod moved out of the furnace. The furnace temperature
was monitored and adjusted to maintain the required test
temperature. Either a 1000 lb capacity, or a 2000 1lb
capacity Instron load cell was used. The 1000 1lb load cell
was necessary for adequate resolution at the higher

temperatures and lower strain rates.

D. DATA REDUCTION

Ductility was determined by measuring both the length of
the undeformed and of the fractured specimen. Raw data from
the strip charts was used in the stress-strain calculations.
Engineering and true stress and strain were computed from
the strip chart data. The raw data from the tensile testing
was reduced for analysis with the aid of a PL/C data reduc-
tion computer program run on an IBM 3033 Computer. The data
reduction program was similar to that developed by Stengel

(Ref. 12]. The data reduction program took into account
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such variables as grip tightening, Instron machine error,

and elastic strain and performed a "floating slope"
calculation at each selected data point. The reduced data
was loaded into computer data files for further computation,

and graph plotting using the EASYPLOT routine.

E. METALLOGRAPHY

Samples of "as-rolled" material were mounted in standard
plastic moulds with cold mounting compound. All optical
microscopy specimens were polished first using 240 to 600
grit paper followed by final polishing using aluminum oxide
abrasive. Graf-Sargent solution (prepared using: 15.5 ml
of Nitric acid, 0.5 ml of HF, 3.0 gms CrOy/ and 84 ml of
water) was used to etch each specimen. Etching time was
sixty seconds. A Zeiss Universal microscope was used for
both 2xamination and photographic work. Examination of
samples was done using polarized light and strain-free
objective lenses. Photographs were taken at magnifications
of 16X, 62X, and 125X resulting in final print magnifica-
tions of ©4X, 250X, and 500X. Panatomic X 35 mm film was

used for all photographic work.
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Iv. RESULTS AND DISCUSSION

A. OPTICAL MICROSCOPY

1. General Results

Optical microscopy as a part of this work was
performed on the following alloys: Al-8% Mg, Al-10% Mg,
Al1-10% Mg-0.4% Cu, Al-8% Mg-0.4% Cu-0.5% Mn, and Al-10%
Mg-0.2% Mn. Results from Becker on the Al-8% Mg-0.4% Cu,
and by Becker and Mills on the Al1-10% Mg-0.5% Mn are also in
this discussion [Ref. 10] and [Ref. 11]. Micrcgraphs that
follow are for materials in the "as-rolled" condition, and
they show in general an elongated and banded grain
structure. The microstructure is often obscured by
precipitated intermetallic compounds.

McNelley and Garg [Ref. 9], have conducted
Transmission Electron Microscope (TEM) work on many of the
alloy compositions under consideration here. They 1ilso
found the banded microstructures observed optically in these
alloys. These microstructures were further revealed to
consist of a cellular dislocation substructure produced by
warm rolling. The precipitated intermetallic phases are not
always obvious in the "as-rolled" TEM micrographs, but some
TEM data on as-rolled material as well as on rolled and

annealed materials suggest cell sizes of approximately 1.0
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microns, and intermetallic bsta phase particles of 0.2 to

0.5 microns size.

Comparison of the optical and TEM micrographs
suggest that the optical microscope is unable to resolve the
detalls of the structure. The intermetallic phase particles
are actually present on a much finer scale than suggested by
the optical micrographs. This appears to be the result of
the manner in which the etchant works and the presence of
the intermetallic phase. Further, optical micrographs are
unable to reveal the grain structure. The optical
microscopy does, on the other hand, provide insight into the
extent of banding in these alloys, and also provides a basis
for comparison of the effects of alloying on the degree of
homogeneity observed in them.

2. Binary Alloys

Examination of micrographs of the two binary
compositions investigated (8% and 10% Mg), Figures 4.1 and
4.2, two factors become appara2nt. First, the micro-
structures are heavily banded and elongated in appearance;
and secondly, both the banding and amount of precipltatad
intermetallic phase 1s greater in the 10% magnesium alloy.
The inte2rmetallic beta phas= (AlBMgS) is the phase dispersed
in both alloys. In the rolling plane the b=sta is found both
as a continuous phase along grain boundaries, and dispersed

nonuniformly within the grains. The greatar amount of
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Triplanar Photomicrograph of Al-3% Mg Binary
Alloy in the As-Rolled Condition, 3Showing
Banding in Transverse and Longitudinal Planes,
and Inhomogeneous Microstructure in the Rolling
Plane. Graf-Sargent Ztch, x250
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Triplanar Photomicrograph of Al-10% Mg Binary
Alloy in the As-Rolled Condition, Again Showing
Banding and Inhomogen=20us Mlicrostructure.
Sraf-Sargent Etch, x250
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TABLE VII

Hechanical Properties of A1-10% Mg-0.2% Mn Alloy

at 0.1
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TABLE VI
Mechanical Properties of Al1-8% Mg-0.4% Cu-0.5% En Alloy
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I'rue Stress at 0.1
(MPA)

Plastic Strain

TABLE III
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UTS

Meckanical Properties of A1-10% Mg Alloy
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system decreases as the manganese content increases. The
same 2ffect is true for manganese when increasing the copper
cont2nt. The high content of magnesium, copper, and
manganese in this system would lead to reduced solubilities
for all three in the alloy. This would result in the
precipitation of more intermetallic phase particles.
According to the phase diagram, this system could contain as
many as four equilibrium phases. Possible candidates for
the coarser intermetallic phase are CuMg4Al6 and MnAl

6 with

the more likely candidate being the CuMg4Al6.

B. MECHANICAL TEST RESULTS

1. General Remarks

Stress~Strain data was obtained as outlined in the
experimental section. Stress-Strain data for 8% Mg with
0.4% Cu and 10% Mg, 0.5% Mn aluminum alloys was obtained
from Becker [Ref. 10], and Mills [Ref. 11]. Tables
containing the results of the mechanical testing are listed
in Tables II through VIII. Plots of this data appear in the
di1scussion, and in the appendices. Appendix A contains the
plots for the 8% Mg alloy, Appendix B, the 10% Mg alloy, and
so forth through Appendix F. The plots available in each
appendix ara: engineering stress-engineering strain at
20°c, 250°c, and 300°C; true stress-true strain at the same
temperatures; log true stress-log true strain at 250°, and

300°2; and ductility-log strain rate.
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Figure 4.6.

Phase Diagram for the Al-Cu-Mg-Mn Allcy System.
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Figure 4.5. Triplanar Photomicrograph of Al-8% Mg-0.4%
Cu-0.5% Mn Alloy in the As-Rolled Condition
Showing the Homogenizing Effect of the Copper
and Manganese Additions; Slight Banding in the
. Transverse and Longitudinal Planes.
Graf-3argent, x250.
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precipitate should be CuMg4A16. The phase diagram for the
Al-Cu-Mg system is 1llustrataed in Figure 2.2. The CuMg4A16
intermetallic phase might have been carried over from the
"as-cast" condition, or might have been precipitated during
processing, due to the decreased solubility of both copper
and magnesium in aluminum with the ternary addition of
copper. In summary, the addition of copper has a
substantial homogenization effect over microstructure when
compared with the binary alloys and also appears to
introduce a third phase, CuMg4Al6.

5. Copper and Manganese Addition

The addition of both copper and manganese to the 8%
magnesium system had the expected results based on the
foregoing observations (see Figure 4.5). We see less
vanding present than in the Al-8% Mg-0.4% Cu alloy, but more
than was found in the Al-10% Mg-0.4% Cu alloy. Manganese is
A strong grain refiner in aluminum alloys. The inter-
metallic phases in this structure are finer, and more widely
Jispersed than 1n the Al-8% Mg-0.4% Cu case. Like the
Al-1l2os¢ M3-9.4% Cu alloy, there 1is the "coarser" second
vr2cipitite present. In the 8% alloy with copper and
nanjan2se Tne preclpltate is larger than the precipitats

todand 1 tier Al-10% Mg-0.4% Cu alloy. A phase diagram for

tnis systen can e found in Figure 4.6. Mondolfo [Ref. 16],
tndesases ot Lne s32lubility of copper in the Al-Mg-Cu-Mn
44
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: figure 4.4. Triplanar Photomicrograph of Al-10% Mg-0.4% Cu

. Alloy in the As-Rolled Condition Showing the

¢ Homogenizing Effect of the Copper Addition.
Graf-Sargent Etch, x250.
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for this alloy system may be found in Figure 2.3. It is
also evident in these micrographs that manganese homogenizzs
the structure. B3anding is evident in the 0.2% manganese
alloy, and especially notable in the non-uniform beta
dispersion when viewed in the rolling plane. At 0.5%
manganese, both features are much less notable although
slight banding may still be seen. The mechanism for this
enhanced homogeneity is not clear. For large manganese
additions, as noted above, there appears a relatively fins
third phase, MnAl.. This phase may refine the matrix grain
structure and may also present preferred sites for bata
phase formation in the alloy. However, based on the phas2

diagram, 0.2% manganese should remain in solution.

4. Copper Alloying Additions

From the optical micrographs (Figure 4.4), the
addition of copper also has a substantial homogenizing
effect on the alloy microstructure. Here, again, the amount
of magnesium present would appear as well to have a
pronounced effect on the appearance of the microstructuar=.
In the Al-8% Mg-0.4% Cu alloy, banding is still gquite
evident, while in the 10% alloy the banding is not as
noticible. In the 10% Mg alloy therza is a fine dispersion
of precipitated beta phase, wi’ +hat appears to be a
coarser dispersion of a different intermetallic phase

superimposed. According to Mondolfo [Ref. 16], this coarse
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Triplanar Photomicrograph of Al-10% Mg-0.2% Mn
Alloy in the As-Rolled Condition Showing the
Homogenizing Effect of the Manganese Addition:
However, the Rolling Plane Microstructure 1is
Still Slightly Inhomogensous at this Mn
Content. Graf-Sargent Etch, x250
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dispersion of beta in the higher percent magnesium alloy 1is
expected due to the larger amount of magnesium present. A
phase diagram for the Al-Mg alloy system 1s shown 1in Figure
2.1, and lever rule calculations suggests about ten volume
percent beta phase for an Al-10% Mg alloy rolled at 300°¢<.
In fact, McNelley and Garg [Ref. 9], found this to be the
case. In the 8% Mg alloy, the lever rule suggests only
about three volume percent beta would be present 1if
precipitation to the equilibrium magnesium content of the
solid solution occurs.

3. Manganese Alloying Additions

Substantial work on the Al-10% Mg-0.5% Mn alloy has
been done by Becker [Ref. 10], and Mills [Ref. 11], and this
data appears in the appendices. 1In this work a lower
manganese content of 0.2% was investigated. Manganese
additions have a very pronounced homogenization effect on
Al-Mg alloys. A triplanar micrograph representation of this
alloy may obe found in Figure 4.3. Manganese 1s a very
effective grain refinar in aluminum alloys [Ref. 16].
Selected area diffraction experiments discussed in an
unpublished work by Garg indicates that the manganese
oearing precipitates 1is MnAl6, In the rolling plane of the
0.2% Mn alloy there is an elongated structure with
praciplitate free zones in regions that are made up of a

dispersion of intermetallic precipitates. The phase diagjram

40
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TABLE VIII
Mechanical Prcperties of A1-10% Mg—0.5% Mn alloy

Ductilit
(Percent{

0.1
(MPR)

True Stress at
Plistic Strain

Strain Rate
(1/sec)

(€)

Temp
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ﬁ_ 2. Magnesium Alloying Additions

( The effect of magnesium on mechanical properties at
the 8 and 10% alloy addition levels is shown in Figures 4.7
through 4.11. In the 8% magnesium alloy, the strength of
the material decrease. as the test temperature increasas
(Figure 4.7). At 300°C, the 8% magnesium alloy is near the
solvus, and the magnesium is tending to go back into

.l solution. A result of this effect would be a relativaly
small volume fraction of b=2ta phase to ra2tard grain growth,
and in addition that the beta present would tend to coarsen

¢ with time at this temperature. From the Zener equation
mentioned previously, the net result would be coarsaning of
the grain structure. An increase in grain size will

‘ suppress grain boundary sliding, and result in dislocation
creep processes dominating, leading to reduced ductilicty.
The samne effects ar=2 at work in the ten percent magn2sium
alloy (Figure 4.8), but to a lesser extent pearhaps, givan

the larger Mg content. With more Mg, a larger volume

fraction of b=2ta would be present and lead to a finer
‘ jrained, weaker material. The 10% alloy is in fact weaker
than the 8% alloy at 300°C (Figure 4.9), and also at 250°C
(Figur= 4.10), although the difference in strength is not
< large at either temperature.
Only limited superplasticity as evaluatad by the

Jductility is observed in th2 eight and ten pa2rcent magnasium
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aluminum alloys. As the percentage of magnesium increasaes,
ther2 is more beta phase presant as noted above, and
therefore, more refinement, and an attenda.t ductility
increase. However, this effect also is not large. It would
be inferred from this that the beta phase by itself is of
limited use in refining and stabilizing the grain structure
of these alloys. Both cf the binary alloys would appear to
behave essentially as Al-Mg solid solution alloys with a
coarse dispersion of particles having limited effect on thea
mechanical properties.

3. Manganese Alloying Additions

The effect of a 0.2% manganese addition on a 10%
magnesium-aluminum alloy is shown in Figures 4.12 and 4.13.
The same data for a 0.5% manganese addition is shown in
Figur=s 4.14 and 4.15. Comparative data for these two
alloys is shown in Figures 4.16 and 4.17. From the data in
Figures 4.12 and 4.14, it is seen that the Al-10% Mg, 0.5%
Mn alloy is weaker at 300°C than it is at 250°C, and that it
15 also weaker at all temperatures than the 10% binary
alloy. The ductility data indicates (Figures 4.13 and 4.15)
that these alloys are more ductile at the 300°C test
temperature. The 10% Mg alloy with 0.2% manganese is more
ductile at room temperature than is the 0.5% manganese
alloy. From the data presented in Figure 4.16, there is a

prograssive weakaning of this matarial as the percent
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content, the greatar the amount 0f copper that precipitatas
out of solid solution.

The copper addition appears to be just as effective
as the manganese addition in enhancing the ductility of
these alloys on a per weight percentage basis (Figure 4.25).
Copper has a similar effect to manganese, in that it
progressively weakens the material probably by micro-
structure refinement. Further, the copper addition offars
slightly higher elongations under elevated temperature
testing conditions than does the manganese. Finally, it
also has a relatively small effect on ambient temperature
ductility, decreasing it from 10-12% elongation for a binary
alloy at room temperature to 7-9% for the copper containing
alloy. In contrast, the manganese bearing alloy exhipbits
ductility of only 3% at room temperature.

5. Copper and Manganese Addition

The Al-8% Mg, 0.4% Cu, 0.5% Mn alloy is shown in
Figurs 4.20. It is weaker at all temperatures than the
219ht percent binary alloy, the effect being mor2 pronounced
it lower strain rates (Figure 4.27). In fact, the alloy is
ilmost 1dentical to the 10% magnesium binary alloy in
strength. The Al-8% Mg-0.4% Cu-0.5% Mn alloy shows higher
ductilities at 300°C than it does at 250°C (Figure 4.23),
1gain like the 10% Mg alloys and in contrast to the 33 Mg

1lloys. Ther2 is an increase in ductility over thosoe
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10% M3 binary alloy at 300°C.  The eignt percent i1lioy is
stronger than the 10% alloy (Figure 4.21). An sxtensiv2
discussion of the superplasticity observad in the Al-3%
Mg-0.4% Cu alloy is a3available in Becker {(Ref. 10].

The Al-8% Mg-0.4% Cu alloy is monre ductile than is
the eight percent binary alloy at low strain rates at 300°C,
but not substantially so (Figure 4.22). The 2ffect on
ductility of the copper addition in the 1l0% Mg alloy is mora
dramatic (Figurs 4.23). This effect i3 most pronounced at
low strain rates. In Figure 4.24, the effects of a 0.4%
copper addition at both the eight and ten percent magnesium
levels are shown. The effect of the copper addition 1is much
greater at the 10% magnesium level. From this we can infer
that not only is the alloying addition, in this case copper,
important, but rather the alloying addition along with a
high magnesium level, i.e., 10% Mg.

In summary, the copper addition has a small effect
ot the 8% alloy, but a large one on the 10% alloy. At
250°C, the 3% alloy with copper is noticeably weaker. It
appears that the effect of the copper addition is to
homogenize, refinea and stabilize the baeta phase. At 300°¢
the principal effect on the 8% Mg alloy is coarsening and
re-solution of the beta, while in the 10% Mg alloy the
structure 1is more stable given the ralatively larger beta

contant. It would appear that the higher the magnesidn
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mangain232 13 ilncreas=ad. This effect 1s more pronounced at
the lowar strain rates than 1t is at the higher values for
strain rate.

The 0.2% manganese containing alloy appears td be an
intermediate stage in the microstructural refinement
process. At the 0.2% Mn level, the manganese is still in
solid solution, and may therefore have little or no 2ffect
on the beta phase, while at the 0.5% Mn addition level we

i

)

2 3e2ing a decreased solubility of both magnesium and
manganese due to the manganese addition. Manganese that
oreclipitates out of solid solution as a third phase may
refine the material's grain structure during hot working,
consejuently providing more nucleation sites for the beta
wnas2 during warm rolling. This would lead to a finer, more
stanle beta phase. Figure 4.17 shows the large jumo in
factility values observed in the Al1-10% Mg-0.5% Mn alloy
>u2r those obtained in the Al-10% Mg-0.2% Mn, and Al1-10% Mg
vinary alloys.

4. Copper Alloying Additions

The 2ffects of copper alloying additions on the
neonanlzal properties of eight and ten percent magnesium
1lloys are snown 1n Figures 4.18 through 4.24. As shown in
Priares 4013 and 4.13, both alloys exhibit normal tampera-
mare dzpendence of the flow stress. As shown in Figure

4.4, the Al-d% Mg-0.4% Cu alloy is slighutly weaker than tha

68
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oos=2rved 1n both the 8% and 10% binary alloys, although the
2ffact 15 l2ss pronounced relative to the 10% binary alloy
{Figure 4.29). A possible effect of the combined copper and
manganesae addition 1s to reduce the solubility of magnesiam
in th2 matsrial. Thus, this alloy behaves like a higher
magnesium alloy. The Mn may also assist in refining the
Jraln structure in conjunction with refinement of the b=2ta

oy the Ju.

J

S. 3Summary of Mechanical Test Data

It should pbe kept in mind that the strength data was
Sotalned at a strain rate of 0.1 while the ductility data
r2flects bahavior of the alloy at much larger strains. As
3ucn, the eff=ct of the alloying =2lements on strength, while
notanl2, 15 not as pronounced as the effect on ductility.

It 1s surmi32d that the alloying additions refine and
pomog=niz=2 the structure during the warm rolling: the Mn, at

I=2as3t, a

'
st

peiars most completely effective when some of it is
nuat Hf solutisn as MnAlé. This would likely refine the

matrix Jraiin structur2. The Cu also 1s present 1n precipi-

taz2d form, 1t may 2also assist in rafining the beata as 1t i3

(92}
C
,
o
'
v
-
.
-
q
.

ditn regard to ductility, the binary 231lloys most

lig2ly =oarsen during plastic deformation, and the addition

(@7
rr

21ther ‘g, Mn, or both, may retard such .oarsening. This

W3ald enhanze tne Jductility of the alloy if such coarsening
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At straians peyond J.1 results, otherwise causing suppression
2f superplastic mechanisms. In reviawing the test .data, the
slopes of log stress versus log strain rate curves (the m
values) do not vary as much as does the ductility data,
again indicating that coarsening (or lack of it) at large
strains 1s an important factor in determining the final

ductility.

34




V. CONCLUSIONS

The following conclusions are drawn from this research:
1) the microstructures of the thermomechanically processed
Al-3% Mg and Al1-10% Mg binary alloys consisted of banded,
inhomnogeneous dispersions of the intermetallic beta phasz;
2) as the percentaj2 magnesium increised 1n tha binary
alloys, thers was 1 mild enhanZament 1n thelr superplastic
propertias; 3) the adiition >5f coooar t> tne oinary alloys
homogenized and refined their mizrostractures; 4) the Al-10%
Mg-0U.4% Cu alloy was the most superplastic alloy observad in
this raesearch: 5) the addicion of manganese t> the binary
alloy has the same 2ffect on microstructur2 as the addition

of copper when added on the same welight percent basis, i.e.,

D

it homogenizaes and refines the microstructure; &) the Al-10%
43-0.5% Mn alloy producas superplastic response under

tensile test conditions at elavated temp2ratures; 7) the

addition of copp=r Jdoes not degrade room temperatura
Py ductility as much as does the addition >f manganese; 3) the
addition of both 0.4% Cu and 0.5% Mn to> the Al-8% Mg oinary
1lloy produces the same strength charactzristics found in
P alloys with higher magnesium contents.
Lhe following recommendations for further study are

nade: 1) a1 detailed study of the effect of covper addition

Ol
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on thes2 alloys; 2) further study into the effects of strain
on grain coarsening, and other structural changes at
2levated temperatures:; 3) that detailed activation energy
data on the alloys studied in this work be obtained, and
compared with the results for the A1-10% Mg-0.5% Mn alloy
obtained by Mills, to examine the effect of alloying
additlion on activation energy; 4) study of the Al-190%
43-0.4% Cu-0.5% Mn alloy for comparison to the 8% alloy with

these alloying additions.
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APPENDIX C

Mechanical Test Data on Al-10% Mg-0.4% Cu Alloy
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